1.1.1 Special Topics in Steel Structures

GENERAL

SCHOOL	Engineering			
ACADEMIC UNIT	CIVIL ENGINE	ERING		
LEVEL OF STUDIES	Undergradua	ate		
COURSE CODE	ΔOM030		SEMESTER	8th
COURSE TITLE	Special Topic	s in Steel Struct	ures	
INDEPENDENT TEACHI if credits are awarded for separate con lectures, laboratory exercises, etc. If the cr of the course, give the weekly teaching	nponents of the edits are award	course, e.g. ed for the whole	WEEKLY TEACHING HOURS	CREDITS
			4	5
Add rows if necessary. The organisation of methods used are described in detail at (d)	-	e teaching		
COURSE TYPE general background, special background, specialised general knowledge, skills development	Specializatio	n Course		
PREREQUISITE COURSES:				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Yes			
COURSE WEBSITE (URL)				

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
 Guidelines for writing Learning Outcomes

Upon successful completion of the course, students are expected to:

• Calculate critical loads of flexural buckling and the corresponding buckling lengths for axially compressed beams, frame members, or others.

• Assess the influence of geometric imperfections, second-order effects, residual stresses and shear deformation of a member's cross-section, on the bearing capacity of elements under axial compression.

- Understand and design steel structural elements consisting of plates with or without stiffeners.
- Design simple cases of cylindrical steel shells.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information, with the use of the necessary technology Adapting to new situations Decision-making Project planning and management Respect for difference and multiculturalism Respect for the natural environment Showing social, professional and ethical responsibility and

Working independently Team work Working in an international environment Working in an interdisciplinary environment Production of new research ideas	sensitivity to gender issues Criticism and self-criticism Production of free, creative and inductive thinking Others
 Search for, analysis and synthesis of data an Adapting to new situations Decision-making Working independently Team work Working in an interdisciplinary environment Project planning and management Criticism and self-criticism Production of free, creative and inductive the 	

SYLLABUS

• Forms of instability of compressed truss elements. Second-order equilibrium (deformed state) of axially compressed rods. The influence of elastic supports on the critical load. Calculation of critical loads and the corresponding buckling lengths. The influence of the axial compressive force on the load-bearing capacity of a beam under simultaneous bending loads.

• Influence of residual stresses and shear deformation on the strength and load-bearing capacity of compressed elements. Regulatory provisions of EC3.

• Strength of planar steel structural elements stressed within their plane (discs).

• Load-bearing capacity of steel shells.

TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face to face.		
Face-to-face, Distance learning, etc.			
USE OF INFORMATION AND			
COMMUNICATIONS TECHNOLOGY			
Use of ICT in teaching, laboratory education,			
communication with students			
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are described in detail.	Lectures	52	
Lectures, seminars, laboratory practice,	Individual study	78	
fieldwork, study and analysis of bibliography,			
tutorials, placements, clinical practice, art			
workshop, interactive teaching, educational			
visits, project, essay writing, artistic creativity, etc.			
The student's study hours for each learning			
activity are given as well as the hours of non-	Course total (26 hours workload	130	
directed study according to the principles of the	per ECTS credit)	150	
STUDENT PERFORMANCE	1 Assignment of tasks aimed a	at exploring the understanding	
EVALUATION	1. Assignment of tasks aimed at exploring the understanding		
Description of the evaluation procedure	of the concepts taught. 2. Final written exam at the en	d of the competer (in Creek)	
Language of evaluation, methods of evaluation,		()	
summative or conclusive, multiple choice	3. Each student is given the opportunity to review their written exam and have their mistakes analyzed.		
questionnaires, short-answer questions, open-	written exam and have their m	listakes analyzed.	
ended questions, problem solving, written work,			
essay/report, oral examination, public presentation, laboratory work, clinical			
examination of patient, art interpretation, other			

Specifically-defined	evaluation	criteria	are
given, and if and wi	here they are	accessib	le to
students.			

ATTACHED BIBLIOGRAPHY

Vagias I, Gantes Ch., Ermopoulos I., Ioannidis G., Application Examples in Special Issues on Steel Structures, Kleidarithmos publ., 2014 (in Greek)