1.1.1 Linear Algebra and Analytical Geometry

GENERAL

SCHOOL	Engineering			
ACADEMIC UNIT	CIVIL ENGINEERING			
LEVEL OF STUDIES	Undergraduate			
COURSE CODE	FEN002 SEMESTER 1st			
COURSE TITLE	Linear Algebra and Analytical Geometry			
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHING HOURS	CREDITS	
			3	5
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).				
COURSE TYPE general background, special background, specialised general knowledge, skills development	Scientific Background			
PREREQUISITE COURSES:				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	No			
COURSE WEBSITE (URL)				

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
 Guidelines for writing Learning Outcomes

Upon completing this course students should be able to use: 1. basic concepts in Linear Algebra (tables, determinants, linear systems – homogeneous/non homogeneous), vector transformations through an array (eigenvalues and eigenvectors, similarity transformations) 2. Vector analysis and vector operations 3. Basic concepts of Analytical Algebra on the level of surface theory for the field of Civil Engineering.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and	Project planning and management
information, with the use of the necessary technology	Respect for difference and multiculturalism
Adapting to new situations	Respect for the natural environment
Decision-making	Showing social, professional and ethical responsibility and
Working independently	sensitivity to gender issues
Team work	Criticism and self-criticism
Working in an international environment	Production of free, creative and inductive thinking

Working in an interdisciplinary environment Production of new research ideas	 Others
The course contributes to the following skills: - Working independently - Production of free, creative and inductive thin	king

SYLLABUS

1. Introduction to Arrays and array operations, determinant of a square matrix .2. Calculation of determinant of greater dimension by analysis into sum of sub-determinants. 3. Allowed operations, calculation of determinant using the triangulation method. 4. Matrix multiplication, properties, permissible row operations on matrices. 5. Inverse of a square matrix and methods of inversion. 6. Linear systems. 7. The concept of vectors. 8. Vectors in space. 9-10. Analytical Geometry in the plane. 11. Analytical Geometry in space. 12. Elements of surface theory. 13. Vector transformations.

TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face to face.		
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	Poweroint presentations, Excel, Matlab/Octave, E-learning platform for educational material.		
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are described in detail. Lectures, seminars, laboratory practice,	Lectures Individual study	39	
fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc.	Practice/exercises		
The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of the ECTS	Course total (26 hours workload per ECTS credit)	130	
STUDENT PERFORMANCE			
EVALUATION Description of the evaluation procedure Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open- ended questions, problem solving, written work,	Final written examination - open-ended questions (30-40 - problem - solving questions (
ended questions, problem solving, whiteh work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other Specifically-defined evaluation criteria are given, and if and where they are accessible to students.			

ATTACHED BIBLIOGRAPHY

- [in Greek]. Τερζίδης Χαράλαμπος, Λογισμός συναρτήσεων μιας μεταβλητής με στοιχεία διανυσματικής γραμμικής άλγεβρας, Εκδόσεις Χριστοδουλίδης, Θεσσαλονίκη 2006
- [In Greek]. Σουρλάς Δημήτρης, Γραμμική Άλγεβρα και Αναλυτική Γεωμετρία , Εκδόσεις Πανεπιστημίου Πατρών, 2013

- [In Greek]. Μπράτσος Αθανάσιος, Μαθήματα Ανώτερων Μαθηματικών, ISBN 978-960-603-030-7, [ηλεκτρ. βιβλ.] Αθήνα: Σύνδεσμος Ελληνικών Ακαδημαϊκών Βιβλιοθηκών, Ηλεκτρονική Διεύθυνση: https://repository.kallipos.gr/handle/11419/424 [In Greek]. Παπαϊωάννου Σταύρος, Βογιατζή, Δέσποινα, Μαθηματικά Ι, ISBN 978-960-603-427-5, [ηλεκτρ. βιβλ.] Αθήνα: Σύνδεσμος Ελληνικών Ακαδημαϊκών Βιβλιοθηκών, Ηλεκτρονική Διεύθυνση: https://repository.kallipos.gr/handle/11419/4551