1.1.1 Physics for Engineers

GENERAL

SCHOOL	Engineering			
ACADEMIC UNIT	CIVIL ENGINEERING			
LEVEL OF STUDIES	Undergraduate			
COURSE CODE	FEN003 SEMESTER 1st			
COURSE TITLE	Physics for Engineers			
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHING HOURS	CREDITS	
		5	6	
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).				
COURSE TYPE general background, special background, specialised general knowledge, skills development	Scientific Background			
PREREQUISITE COURSES:				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	No			
COURSE WEBSITE (URL)	http://teachers.teicm.gr/vozikis/Physics/index.html			

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
 Guidelines for writing Learning Outcomes

Upon completing this course students should be able to approach a problem qualitatively, analyze and interpret what is happening, plan the solution based on basic principles and mathematical tools, verify the results and identify possible improvements.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and	Project planning and management
information, with the use of the necessary technology	Respect for difference and multiculturalism
Adapting to new situations	Respect for the natural environment
Decision-making	Showing social, professional and ethical responsibility and
Working independently	sensitivity to gender issues
Team work	Criticism and self-criticism
Working in an international environment	Production of free, creative and inductive thinking
Working in an interdisciplinary environment	
Production of new research ideas	Others

The course promotes the following skills:

- Working independently
- Team work
- Decision-making
- Criticism and self-criticism
- Production of free, creative and inductive thinking

SYLLABUS

Theory topics

Mathematical background, Material point engineering, Introduction to oscillations, Solid state mechanics, Heat and temperature.

Laboratory exercises aim to introduce students to the essence and correct practices of the experimental process, finding and correcting measurement errors, processing the results and deriving conclusions.

TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face to face.			
Face-to-face, Distance learning, etc.				
USE OF INFORMATION AND	Webpage for the course, E-learning platform for educational			
COMMUNICATIONS TECHNOLOGY	material			
Use of ICT in teaching, laboratory education, communication with students				
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching are	Lectures	40		
described in detail.	Practice/exercises	19		
Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography,	Practice/exercises	6		
tutorials, placements, clinical practice, art	Project(s)	9		
workshop, interactive teaching, educational	Individual study	82		
visits, project, essay writing, artistic creativity, etc.				
The student's study hours for each learning				
activity are given as well as the hours of non- directed study according to the principles of the	Course total (26 hours workload			
ECTS	per ECTS credit)	156		
STUDENT PERFORMANCE				
EVALUATION	Theory examination (90%)			
Description of the evaluation procedure	- mid-term exmams: open ended questions, problem solving			
Language of evaluation, methods of evaluation,	questions (30%)			
summative or conclusive, multiple choice	- final exams: open ended questions, problem solving			
questionnaires, short-answer questions, open- ended questions, problem solving, written work,	questions (60%) Laboratory exams (10%)			
essay/report, oral examination, public	Written assignment for every laboratory exercise.			
presentation, laboratory work, clinical				
examination of patient, art interpretation, other				
Specifically-defined evaluation criteria are				
given, and if and where they are accessible to				
students.				

ATTACHED BIBLIOGRAPHY

[In Greek]. Young H., Freedman R., University Physics with Modern Physics – Vol A, Papazisi (Ed), 2009, ISBN:978-960-02-2338-5

[In Greek]. Halliday D., Resnick R., Walker J., Physics – Vol A, Gutenberg (Ed.), 2012, ISBN:978-960-01-

1493-5

[In Greek]. Fragiadakis, I., Physics and Technology, Ziti (Ed.) 2006, ISBN:960-431-854-3
[In Greek]. Mylonas, N, David, K, Physics, Engineering and Electromagnetism, Tziolas (Ed.) 2019, ISBN: 978-960-418-837-6
[In Greek]. Kleidis, K. Vozikis, C., Physics – Engineering, TEI Central Macedonia 2017,

http://teachers.teicm.gr/vozikis/Physics/theory/Physics-notes.pdf