1.1.1 Differential and Integral Calculus II

GENERAL

SCHOOL	Engineering				
ACADEMIC UNIT	CIVIL ENGINEERING				
LEVEL OF STUDIES	Undergraduate				
COURSE CODE	FEN004 SEMESTER 2nd				
COURSE TITLE	Differential and Integral Calculus II				
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits			WEEKLY TEACHING HOURS		CREDITS
			4		5
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).					
COURSE TYPE general background, special background, specialised general knowledge, skills development	Scientific Background				
PREREQUISITE COURSES:					
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	No				
COURSE WEBSITE (URL)					

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
 Guidelines for writing Learning Outcomes

Upon completing this course students should be able to use: functions of most variables and recognize their graphic representations 2. The concepts of partial derivative and total differential 3. The solving of double and triple integrals 4. Basic concepts of Differential Geometry 5. Line integrals and surface integrals. 6. Implement the above in the field of Civil Engineering.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and	Project planning and management
information, with the use of the necessary technology	Respect for difference and multiculturalism
Adapting to new situations	Respect for the natural environment
Decision-making	Showing social, professional and ethical responsibility and
Working independently	sensitivity to gender issues
Team work	Criticism and self-criticism
Working in an international environment	Production of free, creative and inductive thinking
Working in an interdisciplinary environment	·
Production of new research ideas	Others

- The course contributes to the following skills:
- Working independently
- Production of free, creative and inductive thinking

SYLLABUS

Course content: 1. Introduction to functions of two real variables, examples of graphical representations, sphere, ellipsoid, paraboloid, cone, intersection of surfaces and planes, domain and definition of continuity for z=f(x, y). 2. The concept of partial derivative, physical and geometric interpretation, types and theorems of partial derivatives. The concept of total differential, higher-order partial derivatives. 3. Study of extrema, the problem of least squares, constrained extrema 4. Double Integrals, their physical and geometric interpretation, properties, and methods of computation. Types of integration domains 5. Double integrals, change of variables. Polar Coordinates. Generalization of the Change of Variables Problem, moment of Inertia of a Plane Surface. 6. Triple Integrals. Physical Interpretation. Properties and Computation Methods 7-9. Fundamental knowledge of vector analysis: scalar and vector fields, vector functions. Derivative of a vector function. Angular velocity. Uniform circular motion. Arc length of a curve. Derivative of z=f(x,y) in a given direction. Integrals (definition, properties and calculation methods). Path-independent line integrals. Conservative vector fields. 12. Surface integrals (definition, properties and calculation methods). 13. Stokes' theorem and Gauss's Divergence theorem.

TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face to face.			
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	Poweroint presentations, Excel, Matlab/Octave, E-learning platform for educational material.			
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching are described in detail.	Lectures Individual study	52		
fieldwork, study and analysis of bibliography,	Practice/exercises			
workshop, interactive teaching, educational				
etc.				
The student's study hours for each learning				
directed study according to the principles of the ECTS	Course total (26 hours workload per ECTS credit)	130		
	Final written examination			
EVALUATION Description of the evaluation procedure	- open-ended questions (30-40%)			
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open- ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other	- problem - solving questions (7	70-60%)		
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.				

ATTACHED BIBLIOGRAPHY

[In Greek]. Τερζίδης Χαράλαμπος, Λογισμός συναρτήσεων μιας μεταβλητής με στοιχεία διανυσματικής γραμμικής άλγεβρας, Εκδόσεις Χριστοδουλίδης, Θεσσαλονίκη 2006

[In greek]. Hass J., Heil C., Weir M.D., Απειροστικός Λογισμός, Πανεπιστημιακές Εκδόσεις Κρήτης, Κρήτη 2005, ISBN 978-960-524-515-3, Κωδικός στον Εύδοξο: 77107082

[In greek]. Μπράτσος Αθανάσιος, Μαθήματα Ανώτερων Μαθηματικών, ISBN 978-960-603-030-7, [ηλεκτρ. βιβλ.] Αθήνα: Σύνδεσμος Ελληνικών Ακαδημαϊκών Βιβλιοθηκών, Ηλεκτρονική Διεύθυνση: https://repository.kallipos.gr/handle/11419/424

[In greek} Παπαϊωάννου Σταύρος, Βογιατζή, Δέσποινα, Μαθηματικά Ι, ISBN 978-960-603-427-5, [ηλεκτρ. βιβλ.] Αθήνα: Σύνδεσμος Ελληνικών Ακαδημαϊκών Βιβλιοθηκών, Ηλεκτρονική Διεύθυνση: https://repository.kallipos.gr/handle/11419/4551