1.1.1 Computer Programming

GENERAL

SCHOOL	Engineering			
ACADEMIC UNIT	CIVIL ENGINEERING			
LEVEL OF STUDIES	Undergraduate			
COURSE CODE	FEN006 SEMESTER 2nd			
COURSE TITLE	Computer Programming			
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHING HOURS	CREDITS	
			3	3
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).				
COURSE TYPE general background, special background, specialised general knowledge, skills development	Scientific Background			
PREREQUISITE COURSES:				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	No			
COURSE WEBSITE (URL)				

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
 Guidelines for writing Learning Outcomes

Upon completing this course students should be able to define the way computers work, basic principles of programming, the value of computers for civil engineering, build short programs for engineering applications, calculate numerical problems for civil engineering though computer programming.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and	Project planning and management
information, with the use of the necessary technology	Respect for difference and multiculturalism
Adapting to new situations	Respect for the natural environment
Decision-making	Showing social, professional and ethical responsibility and
Working independently	sensitivity to gender issues
Team work	Criticism and self-criticism
Working in an international environment	Production of free, creative and inductive thinking
Working in an interdisciplinary environment	
Production of new research ideas	Others

- Working independently
- Team work
- Decision-making
- Criticism and self-criticism
- Production of free, creative and inductive thinking

SYLLABUS

Introduction to programming. Algorithms and flowcharts. Matlab environment (Octave). Command line. Constants, variables, arrays, library functions. Arithmetic operations with scalar variables and arrays. Help commands and files. Writing programs. .m Files. Input and output commands (input, disp, fprintf). User-defined functions using inline. Program execution. Debugging. Decision-making statements (if, switch). Looping statements (for, while). Counters, accumulators. Array indexing. Graphical representations. Plotting commands (plot, figure, hold, axis, xlabel, ylabel, title, plot3). 3D graphs (meshgrid, mesh, surf, contour). User-defined functions using the 'function' keyword. function calls. recursion. Data files, reading, writing. Symbolic toolbox. Symbolic variables, functions, roots, derivatives, integrals, differential equations. Data modeling: curve fitting, curve fitting in Matlab

TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face to face.			
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	The course is taght in a computer cluster room with Matlab/(Octave clone) and open source GNU			
	Activity	Semester workload		
The manner and methods of teaching are described in detail.	Lectures Practice/exercises	13 26		
Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity,	Individual study	39		
etc. The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of the ECTS	Course total (26 hours workload per ECTS credit)	78		
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open- ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other Specifically-defined evaluation criteria are given, and if and where they are accessible to	 Written final examination (50% of the final grade) that includes: Open ended questions Problem-solving exercises Group written assignment (2/3 students) (30% of the final grade) Individual laboratory work during the course (20% of the final grade). 			

ATTACHED BIBLIOGRAPHY

-[In Greek]. Γραββάνης Γιώργος, Γιαννουτάκης Κωνσταντίνος, Προγραμματισμός με τη Χρήση Matlab,

Εκδόσεις Α. ΠΑΠΑΣΩΤΗΡΙΟΥ ΣΙΑ ΟΕ, 2012, ISBN: 978-960-491-057-1 -[In Greek]. Stormy Attaway, Matlab: Μια πρακτική εισαγωγή στον προγραμματισμό και την επίλυση προβλημάτων, Εκδόσεις Κλειδάριθμος ΕΠΕ, 2016, ISBN: 978-960-461-663-3 -[In Greek]. Musto J., Howard W., Williams R., Υπολογιστική Μηχανική με Matlab και Excel, Εκδόσεις Τζιόλα, 2015, ISBN: 978-960-418-504-7